Q. 2 b. A coil of 300 turns and of resistance 10Ω is wound uniformly over a steel ring of mean circumference 30 cm and cross-sectional area $9 \mathrm{~cm}^{2}$. It is connected to a supply at 20 V D.C. If the relative permeability of the ring is 1500 , Calculate:
(i) The Magnetising Force
(ii) Reluctance
(iii) M.M.F
(iv) Flux

Answer:

Given: $\mathrm{N}=300: \mathrm{R}=10 \Omega ; \mathrm{l}=30 \mathrm{~cm}$ or 0.3 m ;
$\mathrm{A}=9 \mathrm{~cm}^{2}=9 * 10^{-4} \mathrm{~m}^{2}$; Supply Voltage $=20 \mathrm{~V} ; \mu_{r}=1500$
(i) The magnetizing force H ;

$$
H=\frac{N I}{l}=\frac{N \times(V / R)}{l}=\frac{30 \times(20 / 10)}{0.3}=2000 \frac{A T}{m}(\mathrm{Ans})
$$

(ii) The reluctance, S :

$$
\begin{aligned}
S=\frac{l}{A \mu_{o} \mu_{r}}= & \frac{0.3}{4 \pi \times 10^{-7} \times 1500 \times 9 \times 10^{-4}} \\
& =176.84 \times 10^{3} \frac{\mathrm{AT}}{\mathrm{~Wb}} \text { (Ans) }
\end{aligned}
$$

(iii) The m.m.f:

$$
m . m . f=N I=300 \times(V / R)=300 \times(20 / 10)=600 A T(\text { Ans })
$$

(iv) The flux

$$
\emptyset=\frac{m \cdot m \cdot f}{\text { reluctance }}=\frac{600}{176.84 \times 10^{3}}=3.39 \times 10^{-3} \mathrm{~Wb}(\text { Ans })
$$

Q. 3 b. The primary and secondary windings of a $40 \mathrm{KVA}, 6600 / 250 \mathrm{~V}$ single phase transformer have resistance of 10 ohms and 0.02 ohms respectively. The total leakage reactance is 35Ω as referred to the primary winding. Find full load regulation at power factor of 0.8 lagging.

Answer:

Given Primary Voltage, $\mathrm{V}_{1}=6,600 \mathrm{~V}$; Secondary Voltage, $\mathrm{V}_{2}=250 \mathrm{~V}$ Transformation ratio

$$
K=\frac{V_{2}}{V_{1}}=0.0378
$$

Equivalent resistance of transformer referred to secondary

$$
R_{02}=K^{2} R_{1}+R_{2}=0.03435 \Omega
$$

Equivalent leakage reactance of transformer referred to secondary
$X_{02}=K^{2} X_{01}=0.05022 \Omega$
Secondary rated current,
$I_{2}=\frac{\text { Rated } \mathrm{KVA} \times 1,000}{V_{2}}=160 \mathrm{~A}$
Power factor, $\cos \emptyset=0.8$ and $\sin \emptyset=0.6$
Full load regulation
F.L.R $=\frac{I_{2} R_{02} \cos \emptyset+I_{2} X_{02} \sin \emptyset}{E_{2}} \times 100=3.687 \%$ Ans
Q. 4 b. A 4-pole, 220 V shunt motor has 540 lap-wound conductor. It takes 32 A from the supply mains and develops output power of 5.59 KW . The field winding takes 1 A . The armature resistance is 0.9Ω and the flux per pole is 30 mWb . Calculate
(i) the speed
(ii) the torque developed in Newton meters.

Answer:
Armature current,
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{sh}}=32-1=31 \mathrm{~A}$
Back emf,
$\mathrm{E}_{\mathrm{b}}=\mathrm{V}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=220-31 \times 0.9=192.1 \mathrm{~V}$
Since
$\mathrm{E}_{\mathrm{b}}=\emptyset \mathrm{Z} \frac{\mathrm{N}}{60} \times \frac{\mathrm{P}}{\mathrm{A}}=$
So Speed,
$N=\frac{E_{b} \times 60}{\emptyset Z} \times \frac{A}{P}=711.5 \mathrm{rpm}$ (Ans).
Torque developed,
$\mathrm{T}_{\mathrm{e}}=\frac{9.55 \times \mathrm{E}_{\mathrm{b}} \times \mathrm{I}_{\mathrm{a}}}{\mathrm{N}}=79.93 \mathrm{Nm}$ (Ans).
Shaft Torque
$\mathrm{T}_{\mathrm{sh}}=\frac{9.55 \times \text { output in watts }}{\mathrm{N}}=75.1 \mathrm{Nm}$ (Ans).
Q. 5 b. A 3300 V star-connected synchronous motor has synchronous impedance of $0.4+\mathrm{j} 5 \Omega$ per phase. For an excitation e.m.f. of 4000 V and motor input power of 1000 KW at rated voltage. Compute the line current and Power factor.
Answer:

$$
\begin{aligned}
& \text { Given } \\
& V_{t}=\frac{3300}{\sqrt{3}}=1905.3 \mathrm{~V} \\
& E_{f}=\frac{4000}{\sqrt{3}}=2309.5 \mathrm{~V} \\
& Z_{s}=\sqrt{0.4^{2}+5^{2}}=5.016 \mathrm{~V} \\
& \alpha_{z}=\tan ^{-1} \frac{0.4}{5}=4.57^{\circ}
\end{aligned}
$$

Per phase power input to motor

$$
\begin{aligned}
& P_{\mathrm{im}}=\frac{E_{f} \times V_{t}}{Z_{s}} \sin \left(\delta-\alpha_{z}\right)+\frac{V_{t}^{2}}{Z_{z}^{2}} T_{a} \\
& \sin \left(\delta-\alpha_{z}\right)=0.314 \\
& \delta=22.88^{0} \\
& I_{a} Z_{s}=\sqrt{\left(V_{t}^{2}+E_{f}^{2}-2 \times V_{t} \times E_{f} \cos \delta\right)} \\
& \mathrm{I}_{\mathrm{a}}=184.43 \mathrm{~A} \\
& 3 V_{t} I_{a} \cos \theta=1000,000 \mathrm{~W} \\
& \cos \theta=0.9486 \text { Lead (Ans) }
\end{aligned}
$$

Q. 6 b. In a 6-pole, 3-phase, 50 Hz induction motor with star connected rotor, the rotor resistance per phase is 0.3Ω, the reactance at standstill is 1.5Ω per phase and an e.m.f. between the slip-rings on open-circuit is 175 V . Calculate
(i) Slip at a speed of 950 rpm
(ii) Rotor e.m.f. per phase
(iii) Rotor frequency and reactance at a speed of 950 rpm

Answer:

Synchronous speed,

$$
\mathrm{N}_{\mathrm{s}}=\frac{120 \times \mathrm{f}}{\mathrm{P}}=1,000 \mathrm{rpm}
$$

Rotor speed, $\mathrm{N}=950 \mathrm{rpm}$
i. Slip

$$
\mathrm{s}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}}{\mathrm{~N}_{\mathrm{s}}}=0.05=5 \% \text { (Ans) }
$$

ii. Rotor emf per phase at standstill.

$$
\mathrm{E}_{2}=\frac{175}{\sqrt{3}}=101 \mathrm{~V} \text { (Ans) }
$$

iii. Rotor frequency at a speed of 950 rpm

$$
\mathrm{f}^{\prime}=\mathrm{sf}=2.5 \mathrm{~Hz} \text { (Ans) }
$$

Standstill rotor reactance,
$\mathrm{X}_{2}=1.5 \Omega /$ phase

Rotor reactance at a speed of $950 \mathrm{rpm}=\mathrm{s} \mathrm{X}_{2}=0.75 \Omega$ per phase
(Ans.)
b. Explain how direct sunlight can be converted into electricity.

Answer: Page Number 595 of Text Book

Text Book

Basic Electrical Engineering, D.P. Kothari and I.J. Nagrath, Tata McGraw-Hill Publishing Company Limited, 2nd Edition, 13th Reprint 2006

